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We consider the classic Lagrange long gravitational wave of a homogeneous incompressible
fluid in a shallow canal with a corrugated bottom. We use the asymptotic expansion method
to find the effective depth of a one-dimensional canal and, hence, the effective wave velocity.
A flow in a two-dimensional tank with a corrugated bottom is also studied by this method.
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1. Introduction

The free surface of a fluid in equilibrium under the gravitational field is a plane. If due to an
external perturbation the surface is moved from its equilibrium state, motion will arise in the
fluid. This movement spreads in the fluid in the form of waves called gravitational, because their
existence is conditioned by the field of gravity. Gravity waves occur mainly on the surface of the
fluid, but they affect the interior also, the less the inner layers are deeper.

The restoration of the fluid to equilibrium will produce a movement of the fluid back and
forth, called a wave orbit (Lamb, 1916; Landau and Lifshitz, 1987; Lighthill, 2001).

This type of waves include huge floating elevations of the sea water level (ocean tides) which,
with regularity dictated by the lunar rotation, roll over the surface of water and sometimes even
fall into river beds and run against their currents. In the Earth’s atmosphere, gravity waves are
a mechanism that produces the transfer of momentum from the troposphere to the stratosphere
and mesosphere (Gill, 1982; Nappo, 2012). As for the flows of viscous fluids with the assumption
of corrugated walls of the channel, they were studied thoroughly in the works of Mityushev and
his school, e.g.: Adler et al. (2013), Malevich et al. (2006).

Introductions about long wave equations (shallow water) can be found in the monograph by
Mei et al. (2005). The older book by Dingemans and the recent book by Popescu are providing
a review of techniques available for the problems of wave propagation in regions with uneven
beds as they are encountered in coastal areas (Dingemans, 1997; Popescu, 2014).

The article by Karaeva et al. (2018) deserves attention. The linearized system of shallow
water equations was analyzed, and the homogenization method was used to solve the Cauchy
problem for the wave equation describing evolution of the free surface elevation when long waves
propagate in a basin over an uneven bottom. It was proved that, under certain conditions on the
function describing the basin depth, the solution of the homogenized equation asymptotically
approximates the solution of the exact equation. Several examples for calculating the model
one-dimensional wave equation are constructed using real world ocean bathymetry data. We
consider the case of gravity waves whose length is great compared to depth, which are called
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long waves. In description introduced by Joseph Louis Lagrange (1781), these waves can be
considered approximately linear.
In a linear approximation, we primarily use the principle of mass conservation, i.e. the volume

conservation in the case of incompressible liquids, and the Euler equation for the main direction
of fluid flow.
In this study, we will deal with the propagation of long gravitational waves in corrugated

bottom canals or tanks, i.e. the case when the liquid depth varies. This is an important case,
dominating in nature, where most of the natural rivers and streams have a folded bottom covered
with various irregularities, stones or other obstacles. In particular, it is a case arriving in lakes,
streams, rivers and open channels, in which there grow different types of plants, cf. Evangelos
(2012), Kubrak et al. (2013), Telega and Bielski (2003), Wojnar and Bielski (2014).
Plan of the paper: First, the essentials of asymptotic homogenization are recapitulated

(Section 2). Next we bring out the equations of the linear long gravitational wave in the canal to
accurately capture the influence of corrugation of the bottom. The equations of motion of long
gravitational waves running in one-dimensional canals (Section 3) and two-dimensional tanks
with an uneven bottom (Section 5) are derived. In Section 4. we deal with 1D flows in reservoirs
or canals with different particular types of periodic unevenness. The particular cases of the
bottom are considered in detail. We are looking for a substitute canal with an even bottom for
the canal with an uneven bottom. We use the method of asymptotic expansions, also known as
the homogenization method.

2. Preliminaries on homogenization

The method described in the books of Bensoussan et al. (1980), Sanchez-Palencia (1980),
Bakhvalov and Panasenko (1989) was recently developed in the works of Andrianov et al. (2018).
These authors applied homogenization methods not only for periodic but also quasi-periodic
structures, and optimized designs of functionally graded materials. The homogenization prob-
lems with special stress to fluid flows are discussed in the monograph by Mei and Vernescu
(2010).
We consider long gravity waves in a canal with a corrugated bottom (1D) or in a tank with

a corrugated bottom (2D). To describe the corrugation we use a concept of waviness spacing.
In the lateral direction along the surface, the waviness spacing is a parameter that describes
the mean spacing between periodic corrugation peaks. The amplitude and period of these wavy
variations are small, and we call it the micro-waviness.
Let Ω ⊂ R

n be a bounded regular domain (in our case the bottom of a canal or a tank)
and Γ = ∂Ω its boundary. The value n = 1 for 1D case and n = 2 for 2D case. We introduce a
parameter ε = l/LΩ , where l and LΩ are typical length scales of the structural micro-waves in
the bottom and of the region Ω, respectively.
Accordingly to the two-scale asymptotic approach, instead of one space variable x, we in-

troduce two variables, macroscopic x and microscopic y, where y = x/ε, and instead of the
function f(x) consider the function f(x, y). Now we consider the space Ω × ✷ where the ele-
mentary cell ✷ is a segment of the length Y in 1D case or a rectangle Y1 × Y2 in 2D case. The
variable x is defined in Ω and y in ✷. For shortness, we write x for xα and y for yα with α = 1
for 1D case and α = 1, 2 for 2D case.
The fluid depth is of the form

hε = h(yα, t) (2.1)

where

yα =
xα
ε
and α = 1 for 1D or α = 1, 2 for 2D (2.2)
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The coefficients and the fields of the problem are functions of ε, what indicates the superscript ε.
Taking into account the formula for the total derivative (known as the chain rule) we have

∂f(x, y)

∂x
❀

∂f(x, y)

∂x
+
1

ε

∂f(x, y)

∂y
with y =

x

ε

where the superscript ε denotes the micro-periodicity of the relevant quantities.

Applying the method of two-scale asymptotic expansions, we write

Hε = Hε(x) = H(0)(x, y) + ε1H(1)(x, y) + ε2H(2)(x, y) + · · ·

where the functions H(i)(x, y), i = 0, 1, 2, . . . are assumed to be Y -periodic. For shortness, we
omit the argument t in the terms of this expansion. In detail, we should write obviously H(i) =
H(i)(x, y, t). It is tacitly assumed that all derivatives appearing in the asymptotic homogenization
make sense.

3. One-dimensional gravity waves

The free surface of a fluid in equilibrium in a gravitational field is a horizontal plane. If, under the
action of some external perturbation, the surface is moved from its equilibrium position at some
point, motion will occur in the liquid. This motion will be propagated over the whole surface in
the form of waves of the amplitude Hampl , which are called gravity waves, since they are due to
the action of the gravitational field. The fluid velocity has two components v = [v1, v2] ≡ [u, v]
with u in the x1-direction, and v in the x2-direction.

We shall consider gravity waves in which the velocity of the moving fluid particles is so small
that we may neglect the nonlinear term (v · ∇)v in comparison with ∂v/∂t in Euler’s equation.
The condition (v ·∇)v≪ ∂v/∂t is equivalent to Hampl ≪ L, it means that the amplitude Hampl
of the oscillations H = H(x1, t) in the wave must be small compared with the wavelength L
(Landau and Lifshitz, 1987).

Let us examine first the propagation of long waves in a rectangular canal with a corrugated
(wavy) bottom. The canal is supposed to be of constant width b and of infinite length along the
x1-axis, see Fig. 1.

Fig. 1. Simplified idea of a one-dimensional gravity wave of height H = H(x, t) moving past the canal
with an uneven bottom resulting in different depths with the mean depth h. The dimension of the
elementary cell is l, the length of the wave L. The vector g denotes the Earth acceleration

The depth h of the fluid in the canal is supposed to be small in comparison with the length L
of the considered fluid wave, h≪ L. The corrugation of the bottom is described by the periodic
function β = β(x1). The mean value of β, is 〈β(x1)〉 = 0, and the mean depth of the fluid in the
channel in equilibrium is h.
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The depth of the fluid in the canal in non-equilibrium at the point x1 and at the time t is

h = h(x1, t) = h− β(x1) +H(x1, t) = h0(x1) +H(x1, t)

where h0(x1) ≡ h−β(x1) and H = H(x1, t) denotes the elevation of the wave surface above the
equilibrium liquid free surface level.
The function H = H(x1, t) describing the profile of the considered gravity wave and the

function β = β(x1) describing the bottom waviness are small in comparison with the mean fluid
depth h

H ≪ h and β ≪ h

The cross-section area of the liquid in the canal is given by

S(x1, t) = bh(x1, t)

We shall here consider longitudinal waves, in which the liquid moves along the canal. In such
waves, the velocity component v1 ≡ u along the channel is large compared with the components
v2 ≡ v.
In an analogy to how the classic long wave equation is derived, but remembering that the

depth h0(x1) is variable, we get

∂2H

∂t2
− g

∂

∂x1

(

h0(x1)
∂H

∂x1

)

= 0 (3.1)

If the bottom is flat β = 0 then h0 = h and we receive

∂2H

∂t2
− gh

∂2H

∂x21
= 0 (3.2)

This is the classical Lagrange wave equation (Lagrange, 1781), the value

c =
√

gh (3.3)

is the velocity of propagation of the long gravity wave with a small amplitude in the canal with
the constant depth h.

4. Homogenization of one-dimensional case

Notice, in this Section we write simply x instead of x1.
Our equation of motion reads

∂2Hε

∂t2
− g

∂

∂x

(

hε0
∂Hε

∂x

)

= 0 (4.1)

or

∂2

∂t2

(

H(0)(x, y) + ε1H(1)(x, y) + ε2H(2)(x, y) + · · ·
)

= g
( ∂

∂x
+
1

ε

∂

∂y

)

·
[

h0(y)
( ∂

∂x
+
1

ε

∂

∂y

)(

H(0)(x, y) + ε1H(1)(x, y) + ε2H(2)(x, y) + · · ·
)]

(4.2)

The argument t is omitted. According to the method of asymptotic homogenization, we compare
the terms associated with the same power of ε. We successively obtain:
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— At ε−2

0 =
∂

∂y

(

h0(y)
∂H(0)(x, y)

∂y

)

(4.3)

This equation is satisfied provided that H(0) does not depend on the local variable y, it is

H(0) = H(0)(x) (4.4)

This statement holds true on the assumption that the coefficient h0(y) is Y -periodic. The result
is easy to see if one multiplies Eq. (4.3) by H(0) and integrates over Y . After integration by
parts, and since h0 is positive for the integral to disappear, the derivative ∂H

(0)(x, y)/∂y must
disappear.
— At ε−1 we receive

0 =
∂

∂y

[

h0(y)
(∂H(0)(x)

∂x
+
∂H(1)(x, y)

∂y

)]

(4.5)

and at ε0

∂2H(0)(x)

∂t2
= g

∂

∂x

[

h0(y)
(∂H(0)(x)

∂x
+
∂H(1)(x, y)

∂y

)]

+ g
∂

∂y

[

h0(y)
(∂H(1)(x)

∂x
+
∂H(2)(x, y)

∂y

)]

(4.6)

Equation (4.5) is satisfied if

H(1)(x, y) = ψ(y)
∂H(0)(x)

∂x
(4.7)

where ψ(y) satisfies the equation

d

dy

[

h0(y)
(

1 +
dψ(y)

dy

)]

= 0 (4.8)

known as a local problem.
We submit expression (4.7) into ε0-equation (4.6), integrate over Y and obtain

∂2H(0)(x)

∂t2
= g

∂

∂x

1

|Y |

∫

Y

[

h0(y)
(∂H(0)(x)

∂x
+
∂H(1)(x, y)

∂y

)]

dy (4.9)

or

∂2H(0)(x)

∂t2
= gheff0

∂2H(0)(x)

∂2x
(4.10)

where

heff0 =
1

Y

∫

Y

h0(y)
(

1 +
dψ(y)

dy

)

dy (4.11)

Equation (4.10) presents the homogenized equation of the long gravity wave in the channel with
the effective depth heff0 . Evidently, by this equation we have also

ceff =
√

gheff0 (4.12)
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the effective velocity of the gravity wave in the channel with a corrugated bottom, cf. Eq.
(3.3).
Local equation (4.8) after the first integration gives

h0(y)
(

1 +
dψ(y)

dy

)

= C (4.13)

where C is an unknown constant. After the second integration

ψ(y) − ψ(0) =

y
∫

0

( C

h0(y)
− 1
)

dy (4.14)

and by the periodic boundary conditions on the elementary cell of the length Y

0 = ψ(Y )− ψ(0) =

Y
∫

0

( C

h0(y)
− 1
)

dy (4.15)

we get the constant

C =
Y

∫ Y
0
dy
h0(y)

(4.16)

After substitution (4.13) into (4.11), we get

heff0 =
1

|Y |
C

Y
∫

0

dy = C (4.17)

what is our desired result.
Equations (4.17) and (4.16) can be also written in the form

heff0 =
Y

I0
(4.18)

where

I0 ≡

Y
∫

0

1

h0(y)
dy (4.19)

Equation (4.10), like any one-dimensional wave equation, can have two solutions f1(x − c
eff t)

and f2(x + c
eff t). The solution f1(x − c

eff t) represents what is called the travelling plane wave
propagating in the positive direction of the x-axis. The solution f2(x+ c

eff t) represents a wave
propagating in the opposite direction.

4.1. The effective depth of the canal with a sinusoidal bed (Case I)

Consider a canal with the constant width w0 and with the bed of a sinusoidal cross-section,
with the elementary cell Y , see Fig. 2

h = h(y) = h− a cos(ky) (4.20)

where

k =
2π

Y
(4.21)
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Fig. 2. Elementary cell Y of the canal with a sinusoidal profile of the bottom

In this case, by Eq. (4.19)

I0 =

Y
∫

0

dy

h− a cos(ky)
=

Y

2π

2π
∫

0

dx

h− a cos x
≡

Y

2π
I (4.22)

We separately count the integral

I ≡

2π
∫

0

dx

h− a cos x
=

π
∫

0

dx

h− a cos x
+

2π
∫

π

dx

h− a cos x
(4.23)

After substitution t = tan(x/2), we have

cos x =
1− t2

1 + t2
and dx =

2

1 + t2
dt

and

I =

∞
∫

0

2 dt

h(1 + t2)− a(1− t2)
+

0
∫

−∞

2 dt

h(1 + t2)− a(1− t2)
=

2π
√

h
2
− a2

and by Eq. (4.18)

heff0 =

√

h
2
− a2 (4.24)

Since a is much less than h, we can also write

heff0 = h
(

1−
1

2

a2

h
2

)

(4.25)

4.2. The effective canal depths for other bed profiles (Cases II and III)

Consider canals with the constant width w0 and with different bottom profiles.
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Case II

The profile h = h(y) of the cross-section of the cell Y is described by, see Fig. 3

h0 =



































h− a for 0 < y <
1

4
Y

h+ a for
1

4
Y < y <

3

4
Y

h− a for
3

4
Y < y < Y

(4.26)

Fig. 3. Elementary cell Y for the channel with the step up step down profile of the bottom

By definition (4.19), and after integration

I0 =
h

h
2
− a2

Y (4.27)

Hence, by Eq. (4.18)

heff0 =
Y

I0
= h
(

1−
a2

h
2

)

(4.28)

Case III

The profile h = h(y) of the cross-section of the cell Y is described by, see Fig. 4

h0 =











h−Ay −B for 0 < y <
1

2
Y

h−A1y −B1 for
1

2
Y < y < Y

with

A = −
4a

Y
B = a A1 =

4a

Y
B1 = −3a

By definition (4.19)

I0 ≡

Y
∫

0

dy

h0(y)
=

Y/2
∫

0

dy

h−Ay −B
+

Y
∫

Y/2

dy

h−A1y −B1
=
Y

2a
ln
h+ a

h− a

By Eq. (4.18)

heff0 =
Y

I0
=
2a

ln h+a
h−a

(4.29)
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Fig. 4. Elementary cell Y for the canal with a saw-toothed profile of the bottom

For small a/h

heff0 = h
(

1−
1

3

a2

h
2

)

(4.30)

Comparing the results of this Section, we have, cf. Eqs.(4.30), (4.25) and (4.28)

1−
1

3

a2

h
2 > 1−

1

2

a2

h
2 > 1−

a2

h
2

what means that for the same amplitude a the canal with the bed of the saw-toothed profile has
the effective depth greater than other discussed profiles.

5. Long gravity waves in an infinite tank with the corrugated bottom

What concerns two-dimensional tanks with a corrugated bottom, due to the article length limit
of 12 pages, in this Section we only provide a general scheme of proceeding according to the ho-
mogenization method. The equation of a long gravitational wave in two dimensions propagating
into a tank of variable depth is

∂2H

∂t2
− g

∂

∂xα

(

h0
∂H

∂xα

)

= 0 α = 1, 2 (5.1)

If the bottom exhibits periodic micro-waviness, our equation reads

∂2Hε

∂t2
− g

∂

∂xα

(

hε0
∂Hε

∂xα

)

= 0 (5.2)

or

∂2

∂t2

(

H(0)(x, y) + ε1H(1)(x, y) + · · ·
)

= g
( ∂

∂xα
+
1

ε

∂

∂yα

)

·
[

h0(y)
( ∂

∂xα
+
1

ε

∂

∂yα

)

(H(0)(x, y) + ε1H(1)(x, y) + · · · )
]

(5.3)

According to the method of asymptotic homogenization we compare the terms associated
with the same power of ε. We successively obtain:
— At ε−2

0 =
∂

∂yα

(

h0(y)
∂H(0)(x, y)

∂yα

)

(5.4)
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This equation is satisfied provided that H(0) does not depend on the local variable y, it is

H(0) = H(0)(x) (5.5)

This statement holds true on the assumption that the coefficient h0(y) is Y -periodic.

— At ε−1 we receive

0 =
∂

∂yα

[

h0(y)
(∂H(0)(x)

∂xα
+
∂H(1)(x, y)

∂yα

)]

(5.6)

— At ε0

∂2H(0)(x)

∂t2
= g

∂

∂xα

[

h0(y)
(∂H(0)(x)

∂xα
+
∂H(1)(x, y)

∂yα

)]

+ g
∂

∂yα

[

h0(y)
(∂H(1)(x)

∂xα
+
∂H(2)(x, y)

∂yα

)]

(5.7)

Equation (5.6) is satisfied, if

H(1) = ψβ(y)
∂H(0)(x)

∂xβ
(5.8)

and the vector function ψα(y) is a solution of the following local problem

∂

∂yα

[

h0(y)
(

δαβ +
∂ψβ(y)

∂yα

)]

(5.9)

Substituting (5.8) into (5.7) and integrating over Y , we obtain

∂2H(0)(x)

∂t2
= gheff0αβ

∂2H(0)(x)

∂xα∂xβ
(5.10)

where

heff0αβ =
1

Y

∫

Y

h0(y)
(

δαβ +
∂ψβ(y)

∂yα

)

dy (5.11)

and the periodic boundary conditions over Y were exploited.

If h0(y1, y2) = h0(y2, y1), a special case of which is the product equality

h0(y1, y2) ≡ f(y1)g(y2) = f(y2)g(y1)

(f, g are arbitrary functions), then ψ1(y1, y2) = ψ2(y2, y1) and h
eff
0 11 = h

eff
0 22.

6. Comments

The method of two-scale asymptotic expansions, it would seem, only the MacLaurin expansion
according to the ε coefficient (but in the functional space) made it possible to find effective
depth equivalent values for long gravitational waves for various topographies of the bottom of
the reservoir. Thanks to this, it is possible to describe the propagation of gravitational waves in
a one-dimensional channel and a two-dimensional reservoir by the common wave equation with
the velocity

√

gheff .
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After deriving the equations of motion of long gravitational waves running in one-dimensional
canals and two-dimensional tanks with an uneven bottom, we have proposed to apply the ho-
mogenization method estimating the influence of the rough bottom on the propagation of long
gravity waves. We have shown that the equation describing such waves is the same as in the
case of the flat bottom, but the depth of the reservoir is replaced by the effective value found
according to the homogenization method.
If foreseeable wave disturbance is long, and if takes it for a length unit, then we have the

inequalities l ≪ h≪ 1, where l denotes the period of the bottom corrugation, and h – the depth
of the canal liquid in equilibrium. The value of the bottom corrugation vertical amplitude a and
the wave amplitude H on the surface of the fluid, that is its vertical disturbance H, both are of
the order of l.
In our work, we dealt with the flow of long gravitational waves in one-dimensional canals and

two-dimensional tanks with an uneven bottom. We assumed that the dimensions of unevenness
were small in relation to the wavelength of the gravity wave. We were looking for a substitute
reservoir (canal) with an even bottom for the realistic reservoir with an uneven bottom. The
method of asymptotic development, known as the homogenization method, is well suited for this
purpose.
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